13 research outputs found

    Eigen-spectrograms: an interpretable feature space for bearing fault diagnosis based on artificial intelligence and image processing

    Full text link
    The Intelligent Fault Diagnosis of rotating machinery proposes some captivating challenges in light of the imminent big data era. Although results achieved by artificial intelligence and deep learning constantly improve, this field is characterized by several open issues. Models' interpretation is still buried under the foundations of data driven science, thus requiring attention to the development of new opportunities also for machine learning theories. This study proposes a machine learning diagnosis model, based on intelligent spectrogram recognition, via image processing. The approach is characterized by the introduction of the eigen-spectrograms and randomized linear algebra in fault diagnosis. The eigen-spectrograms hierarchically display inherent structures underlying spectrogram images. Also, different combinations of eigen-spectrograms are expected to describe multiple machine health states. Randomized algebra and eigen-spectrograms enable the construction of a significant feature space, which nonetheless emerges as a viable device to explore models' interpretations. The computational efficiency of randomized approaches further collocates this methodology in the big data perspective and provides new reading keys of well-established statistical learning theories, such as the Support Vector Machine (SVM). The conjunction of randomized algebra and Support Vector Machine for spectrogram recognition shows to be extremely accurate and efficient as compared to state of the art results.Comment: 14 pages, 13 figure

    Explainable AI for Machine Fault Diagnosis: Understanding Features' Contribution in Machine Learning Models for Industrial Condition Monitoring

    Get PDF
    Although the effectiveness of machine learning (ML) for machine diagnosis has been widely established, the interpretation of the diagnosis outcomes is still an open issue. Machine learning models behave as black boxes; therefore, the contribution given by each of the selected features to the diagnosis is not transparent to the user. This work is aimed at investigating the capabilities of the SHapley Additive exPlanation (SHAP) to identify the most important features for fault detection and classification in condition monitoring programs for rotating machinery. The authors analyse the case of medium-sized bearings of industrial interest. Namely, vibration data were collected for different health states from the test rig for industrial bearings available at the Mechanical Engineering Laboratory of Politecnico di Torino. The Support Vector Machine (SVM) and k-Nearest Neighbour (kNN) diagnosis models are explained by means of the SHAP. Accuracies higher than 98.5% are achieved for both the models using the SHAP as a criterion for feature selection. It is found that the skewness and the shape factor of the vibration signal have the greatest impact on the models’ outcomes

    A proposal of a technique for correlating defect dimensions to vibration amplitude in bearing monitoring

    Get PDF
    The capability of early stage detection of a defect is gaining more and more importance because it can help the maintenance process, the cost reduction and the reliability of the systems. The increment of vibration amplitude is a well-known method for evaluating the damage of a component, but it is sometimes difficult to understand the exact level of damage. In other words, the amplitude of vibration cannot be directly connected to the dimension of the defect. In the present paper, based on a non-Hertzian contact algorithm, the spectrum of the pressure distribution in the contact surface between the race and the rolling element is evaluated. Such spectrum is then compared with the acquired spectrum of a vibration response of a defected bearing. The bearing vibration pattern was previously analyzed with monitoring techniques to extract all the damage information. The correlation between the spectrum of the pressure distribution in the defected contact surface and the analyzed spectrum of the damaged bearing highlights a strict relationship. By using that analysis, a precise correlation between defect aspect and dimension and vibration level can be addressed to estimate the level of damaging

    Artificial Intelligence Tools Applied to the Machine Fault Diagnosis of the Rotor-Bearing System

    No full text
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Intelligent Fault Diagnosis of Industrial Bearings Using Transfer Learning and CNNs Pre-Trained for Audio Classification

    Get PDF
    The training of Artificial Intelligence algorithms for machine diagnosis often requires a huge amount of data, which is scarcely available in industry. This work shows that convolutional networks pre-trained for audio classification already contain knowledge for classifying bearing vibrations, since both tasks share the need to extract features from spectrograms. Knowledge transfer is realized through transfer learning to identify localized defects in rolling element bearings. This technique provides a tool to transfer the knowledge embedded in neural networks pre-trained for fulfilling similar tasks to diagnostic scenarios, significantly limiting the amount of data needed for fine-tuning. The VGGish model was fine-tuned for the specific diagnostic task by handling vibration samples. Data were extracted from the test bench for medium-size bearings specially set up in the mechanical engineering laboratories of the Politecnico di Torino. The experiment involved three damage classes. Results show that the model pre-trained using sound spectrograms can be successfully employed for classifying the bearing state through vibration spectrograms. The effectiveness of the model is assessed through comparisons with the existing literature

    Intelligenza Artificiale Generativa per la produzione di dati sintetici nella diagnosi di macchine rotanti

    No full text
    The subject of rotating machinery diagnostics is witnessing a growing significance of Artificial Intelligence (AI) as it demonstrates a remarkable capability to establish correlations between diagnostic parameters and the overall health condition. Nevertheless, the use of AI methodologies necessitates a substantial amount of training data, posing challenges in acquiring such data for damaged industrial machineries. This research presents a novel approach for generating synthetic data using Cycle-Consistent Generative Adversarial Networks (cycleGANs). The proposed model is designed to transform wavelet-based images of simulated vibration signals into real data obtained from machines exhibiting bearing faults. The Maximum Mean Discrepancy (MMD) demonstrates a noteworthy resemblance between synthetic and real data. Synthetic data result effective for training Convolutional Neural Networks (CNNs) by means of Transfer Learning (TL). The research is conducted using the test rig for industrial bearing located at the Mechanical and Aerospace Engineering Department of Politecnico di Torino

    Deep Transfer Learning for Machine Diagnosis: From Sound and Music Recognition to Bearing Fault Detection

    No full text
    Today’s deep learning strategies require ever-increasing computational efforts and demand for very large amounts of labelled data. Providing such expensive resources for machine diagnosis is highly challenging. Transfer learning recently emerged as a valuable approach to address these issues. Thus, the knowledge learned by deep architectures in different scenarios can be reused for the purpose of machine diagnosis, minimizing data collecting efforts. Existing research provides evidence that networks pre-trained for image recognition can classify machine vibrations in the time-frequency domain by means of transfer learning. So far, however, there has been little discussion about the potentials included in networks pre-trained for sound recognition, which are inherently suited for time-frequency tasks. This work argues that deep architectures trained for music recognition and sound detection can perform machine diagnosis. The YAMNet convolutional network was designed to serve extremely efficient mobile applications for sound detection, and it was originally trained on millions of data extracted from YouTube clips. That framework is employed to detect bearing faults for the CWRU dataset. It is shown that transferring knowledge from sound and music recognition to bearing fault detection is successful. The maximum accuracy is achieved using a few hundred data for fine-tuning the fault diagnosis model

    Deep Transfer Learning for Machine Diagnosis: From Sound and Music Recognition to Bearing Fault Detection

    No full text
    Today’s deep learning strategies require ever-increasing computational efforts and demand for very large amounts of labelled data. Providing such expensive resources for machine diagnosis is highly challenging. Transfer learning recently emerged as a valuable approach to address these issues. Thus, the knowledge learned by deep architectures in different scenarios can be reused for the purpose of machine diagnosis, minimizing data collecting efforts. Existing research provides evidence that networks pre-trained for image recognition can classify machine vibrations in the time-frequency domain by means of transfer learning. So far, however, there has been little discussion about the potentials included in networks pre-trained for sound recognition, which are inherently suited for time-frequency tasks. This work argues that deep architectures trained for music recognition and sound detection can perform machine diagnosis. The YAMNet convolutional network was designed to serve extremely efficient mobile applications for sound detection, and it was originally trained on millions of data extracted from YouTube clips. That framework is employed to detect bearing faults for the CWRU dataset. It is shown that transferring knowledge from sound and music recognition to bearing fault detection is successful. The maximum accuracy is achieved using a few hundred data for fine-tuning the fault diagnosis model

    Explainable AI for Machine Fault Diagnosis: Understanding Features’ Contribution in Machine Learning Models for Industrial Condition Monitoring

    No full text
    Although the effectiveness of machine learning (ML) for machine diagnosis has been widely established, the interpretation of the diagnosis outcomes is still an open issue. Machine learning models behave as black boxes; therefore, the contribution given by each of the selected features to the diagnosis is not transparent to the user. This work is aimed at investigating the capabilities of the SHapley Additive exPlanation (SHAP) to identify the most important features for fault detection and classification in condition monitoring programs for rotating machinery. The authors analyse the case of medium-sized bearings of industrial interest. Namely, vibration data were collected for different health states from the test rig for industrial bearings available at the Mechanical Engineering Laboratory of Politecnico di Torino. The Support Vector Machine (SVM) and k-Nearest Neighbour (kNN) diagnosis models are explained by means of the SHAP. Accuracies higher than 98.5% are achieved for both the models using the SHAP as a criterion for feature selection. It is found that the skewness and the shape factor of the vibration signal have the greatest impact on the models’ outcomes
    corecore